HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY The heparin-binding exosite of factor IXa is a critical regulator of plasma thrombin generation and venous thrombosis
نویسندگان
چکیده
The role of the factor IXa heparin-binding exosite in coagulation was assessed with mutations that enhance (R170A) or reduce (R233A) stability of the proteasefactor VIIIa A2 domain interaction. After tissue factor (TF) addition to reconstituted factor IX-deficient plasma, factor IX R170A supported a 2-fold increase in velocity index (slope) and peak thrombin concentration, whereas factor IX R233A had a 4to 10-fold reduction relative to factor IX wild-type. In the absence of TF, 5 to 100 pM of factor IXa increased thrombin generation to approach TF-stimulated thrombin generation at 100% factor IX. Factor IXa R170A demonstrated a 2to 3-fold increase in peak thrombin concentration and 5-fold increase in velocity index, whereas the response for factor IXa R233A was blunted and delayed relative to wild-type protease. In hemophilia B mice, factor IX replacement reduced the average time to hemostasis after saphenous vein incision, and the time to occlusion after FeCl3-induced saphenous vein injury. At 5% factor IX, the times to occlusion for factor IX wild-type, R170A, and R233A were 15.7 minutes, 9.1 minutes (P < .003), and more than 45 minutes. These data support the role of the factor IXa heparin-binding exosite as a critical regulator of coagulation and novel antithrombotic target. (Blood. 2008;112: 3234-3241)
منابع مشابه
HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Depolymerized holothurian glycosaminoglycan and heparin inhibit the intrinsic tenase complex by a common antithrombin-independent mechanism
Depolymerized holothurian glycosaminoglycan (DHG) is a fucosylated chrondroitin sulfate that possesses antithrombinindependent antithrombotic properties and inhibits factor X activation by the intrinsic tenase complex (factor IXa– factor VIIIa). The mechanism and molecular target for intrinsic tenase inhibition were determined and compared with inhibition by low-molecular-weight heparin (LMWH)....
متن کاملCartilage oligomeric matrix protein is a natural inhibitor of thrombin.
Thrombin is an effector enzyme for hemostasis and thrombosis; however, endogenous regulators of thrombin remain elusive. Cartilage oligomeric matrix protein (COMP), a matricellular protein also known as thrombospondin-5, is essential for maintaining vascular homeostasis. Here, we asked whether COMP is involved in the process of blood coagulation. COMP deficiency shortened tail-bleeding and clot...
متن کاملFactor XI as a Therapeutic Target.
Factor XIa is a plasma serine protease that contributes to thrombin generation primarily through proteolytic activation of factor IX. Traditionally considered part of the intrinsic pathway of coagulation, several lines of evidence now suggest that factor XIa serves as an interface between the vitamin-K-dependent thrombin generation mechanism and the proinflammatory kallikrein-kinin system, allo...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Structural requirements for the activation of human factor VIII by thrombin
The coagulation factors V (FV) and VIII (FVIII) are important at sites of vascular injury for the amplification of the clotting cascade. Natural variants of these factors frequently lead to severe bleeding disorders. To understand the mechanisms of activation of FVIII by thrombin, we used a bank of mutant thrombins to define residues important for its activation. From the initial screening of 5...
متن کاملCoagulation factor IXa as a target for treatment and prophylaxis of venous thromboembolism.
Venous thromboembolism remains a frequent cause of vascular death. Despite advances in anticoagulant drug development, unmet needs remain, including limited treatment options for patients with severe renal impairment and the inability to fully reverse the effects of anticoagulants approved or in late-stage development. Because coagulation factor IXa plays a pivotal role in tissue factor-mediate...
متن کامل